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Abstract: This paper solves a bi-level multi objective large scale quadratic
programming problem with stochastic parameters in the congtraints
(SBLMOLSQPP). We solve this problem usingan algorithm that begins with
transforming the probabilistic nature to equivalent deterministic of this
problem, thenTaylor seriesis used to overcome the complexity of the quadratic
problem. Finally, an illustrative numerical example is given to clarify the
devel oped theory.
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1. Introduction

Decision problems of stochastic or probabilistidimization arise when certain coefficients of an
optimization model are random quantities. Stochastilti objective programs are challenging from
both computational and theoretical points of viémcs they combine three different types of models
into one. Until now algorithmic results have beienited to special instances [1].

Stochastic or chance constraint programming is thenaatical programing where some of the data in
the objective function or in the constraints areartain. Uncertainty is usually represented by a
probability distribution on the parameters.

Bi level programming problems (BLPPs) are hierazahbptimization problems in which there exist
two decision makers (DMs) who have different pties on decision. It is assumed that the DM at the
upper level, who has higher priority than the otliiest specifies a strategy, and then the DM at the
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lower level chooses a strategy so as to optim&zevitn objective with full knowledge of the actioh o
the DM at the upper level [2].

Multi-objective optimization problems are a clagglifficult optimization problems in which several
different objective functions have to be consideséuiultaneously. Usually, there is no solution
optimizing simultaneously all the several objectivections [3].

Large scale programming which closely describes rapgesents the real world decision situations,
various factors of the real system should be reftean the description of the objective functiordan
constraints, naturally these objective function amhstraints involve many parameters and the
experts may assign them different values [4, 5].

Emam et al. [6] Presented an algorithm to solvéev®l multi-objective large scale quadratic
programming problem with stochastic parameter éndhjective functions. The objective of the first
phase of the solution algorithm is to avoid the plaxity of the stochastic nature and converts the
problem into crisp problem, then Taylor seriesambined with weight method to convert the multi-
objective quadratic problem into linear objectivmdtion. Therefore, the decomposition algorithm is
usedto get the optimal solution for this problemrméan et al. [7] solved bi-level large scale quddrat
programming problem with stochastic parameterbénconstraints (SBLLSQPP).

Alrefaei et al. [8] addressed the multi-objectitechastic optimization problem that arises in many
real-world applications, especially in supply chamanagement and optimization. To this end, a
simulated annealing algorithm is presented and taesblving this problem. The algorithm uses the
hill-climbing criterion in order to escape from &aninimalist trap. The paper also introduces a new
Pareto set for stochastic optimization problems adedhonstrates the application of simulated
annealing on this Pareto set.

Lachhwani [9] proposed an alternate technique baseduzzy goal programming approach for
solving multi-level multi objective linear progranmg problem (ML-MOLPP).In formulation of FGP
model each objective functions at each level amsformed into fuzzy goals. Suitable membership
function for every fuzzily described transformedjemive functions at each level as well as the
control vectors of each level decision makers &findd by determining individual optimal solution
of each objective function at each of the decisimaking level. Then FGP approach is used for
achieving highest degree of each of these memipegbéls by minimizing the sum of negative
deviational variables.

Currently the major challenging task for this paenow to solve large scale bi level multi objeeti
problem with probabilistic nature in constrains, tes paper introduces an algorithm to solve this
problem.

The rest of the paper is organized as follows: taet §1 Section 2 by formulating the model of a bi-
level multi-objective large scale quadratic progmasimy problem with stochastic parameters in
constrains. Section 3 converts the stochastic mstcains into deterministic. Section 4 presents a
Taylor series approach for bi-level large scale troldjective quadratic programming problem
(BLSLMOQPP) to convert the quadratic objective fiimres to linear objective functions. In section 5,
the decomposition method for large scale bi-leweédr programming problem is presented. In
Section 6, an example is provided to describe theldped results. Finally, Section 7 concludes the
paper and states some open points for future @seasrk in the area of stochastic bi-level multi-
objective quadratic programming optimization profe

2. Problem Formulation and Solution Concept

The bi-level large scale multi-objective quadrafipogramming problem (BLLSMOQPP) with
stochastic parameters in constrains may be foreaias follows:
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[Upper Level]

Max Fy(x) = Max (f, 0 1,09, .f (), (1)
X1:X, X1:X, !

Wherex;, X,,...,X solves
[Lower Level]

Max F,(x) = Max(f21(x),f22(x),...,fZn(x)), @

x3’ 4 3174

Subject to

xOG. 3
Where

G = Pr(@oX + 8% + 8% *+ 8oXs + 8% Sh) 2,
prdx<h)za,
pr(dyx,<b)za,
pr (d3X3 < Q) = 03,
pr(dx <b)za,
pr(d.x,<h,)=a,

Xppeee Xy 2 0. }

And also where

£ =6, +%><Tuj x,(i=1,2),(=12.n @)

Let the functiong; andF, are quadratic objective functions definedbn

LetX,, X, , X, X, be real vector variables indicating the first decidevel's choice and the second
decision level's choice. Moreover, the upper legletision maker has<, X, indicating the first

decision level choice, the lower level decision erakavex,, X, indicating the second decision level
choice.

Let(L',L*) aremxn matrices describing the coefficients of the quadrerms andc; arelxm

matrices. In the above problem (1) — ¢di)s m real vector variables. Let G be the large scalealin
constraint set wherdy = (by,...,b,,)" ism + lvector, an@,,...,a,,,d,,...,d, are constants.

Furthermore p stands for probability aogis a specified probability value.

This means that the linear constraints may be tédlaome of the time and at most 10@()-% of
the time. For the sake of simplicity, we assumé tha random parametets, (i =1, 2,..., m) are
distributed normally with known means Eff and variances VJ, }and independently of each other.
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Definition 1: For any (xl,x2 G, ={x1,x2|(x1,.x2,x3,...,xm)DG})given by upper level, if the
decision-making variable (X3,X4 UG, :{XS,X4| (xl,.xz,x3,...,xm)DG}) is the Pareto optimal
solution of the lower level, then (Xl,.XZ, X3, x4) is a feasible solution of (BLLSVIOQPP).

Definition 2: If X OR™ is a feasible solution of the (BLMOLSQPP) with probability [] a ; no
1=1

other feasible solution X[IG exists, such that F; (x) <k (x)so X is the Pareto optimal solution of
the (BLMOLSQPP).

3. Stochastic Transfor mation

The basic idea is to convert the probabilistic ratf stochastic bi-level large scale multi-objeeti
programming problem into deterministic problem Ilsyng [10]:

X':{xDR"ia”xjsE(bi)+Ka,Nar(bi),(i:1,2 ...... m), X, = 0,(j = 1,2,.... m)} ®)

Where K, is the standard normal value such ®@K,)=1-a;; and ®(a) represents the
“cumulative distribution function” of the standamdrmal distribution evaluated at a.

Then the problem can be understood as the corrdsmpleterministic bi-level large scale multi-
objective quadratic programming problem as follayvin

[Upper Level]
Max F,(x )= Max [ f,(X),..., f,,(x)] (6)

X1, X5 X1, X5

[Lower Level]

(7)
Max  Fp(x)= Max [ f(X)ms iy ()]
xOG'. (8)
Where
G' ={ 3y +3y,%, T ap,X, = b01
dx <b,
d,X, <b,,
dx, <b,,
XppeeeXy 20}

4. Taylor Series Approach

We use the weighting method to transform the objedtunctions in the upper level and lower level
from multi-objective into single objective.
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To solve a hi level large scale quadratic programgngroblem using decomposition algorithms is a
complex problem. Taylor series can overcome thismexity by obtaining polynomial objective
functions equivalent to quadratic objective funetion the following form [11]:

OF (X))

dx,

K OF" () =F )+, 04 = %) (j=12..m),( =12) (9)

So the BLLSPP can be written as:

[Upper Level]

10
Max K, (x ), !

Wherex,, X, solves

[Lower Level]

Max K,(X), (11)

X3, X4

Subject to

xO0G'. (12)

5. Decomposition Algorithm for Bi Level Large Scale Linear Programming
Problem

The bi level large scale linear programming problemsolved by adopting the leader-follower
Stackelberg strategy combined with Dantzig and Wetfomposition method [12]. First, the optimal
solution that is acceptable to the FLDM is obtainosthg the decomposition method to break the large
scale problem into n-sub problems that can be dalirectly.

The decomposition technique depends on represeth@gnBLLSLPP in terms of the extreme points of
the setsl x, <b,,x,=20,5=12...,m.To do so, the solution space described by dach<b,,

X, 20, ] =12..,mmust be bounded and closed.

After that by inserting the upper level decisiomiable to the lower level for him/her to search tioe
optimal solution using Dantzig and Wolf decompasitmethod [12], then the decomposition method
breaks the large scale problem into n-sub probkiaiscan be solved directly and obtain the optimal
solution for his/her problem which is the optimalwion to the BILSPP.

Theorem 1: The decomposition algorithm terminates in a finite number of iterations, yielding a
solution of the large scale problem.

To prove theorem 1 above, the reader can refdiZp [

6. An Algorithm for Solving BLL SMOQP Problem
6.1 Algorithm

This is an algorithm to solve bi-level large scatelti-objective quadratic programming problem
programming problem (BLLSMOQPP) with stochasticgmagters in constrains.
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This algorithm conquers the complexity nature af thi level large scale quadratic programming
problem. The suggested algorithm can be summaiizée following manner:

Step 1: Calculate thez{6] }andvar{6] }.

Step 2: Convert from stochastic to deterministic formula.

Step 3: Formulate the equivalent bi-level large scale maffiiective quadratic programming
Step 4: Use weight method to convert from multi objectigesingle objective.

Step 5: Convert bi level large scale multi-objective quaidrg@rogramming to linear by using Taylor
series approach.

Step 6: Start with the upper level problem and convertrifaster problem in terms of extreme points
of the setsl x, <b,,x,20,s=1, 2, 3

Step 7: Determine the extreme poin;@:i B )D(Sk s= 123 using Balinski’'s algorithm [13].
k=1

Step 8: Setk =1.
Step 9: Computez, —cy = C,B ' P« - Cx« .

g g
Step 10: If Z«—C« <0 , then go to Step 11; otherwise, the optimal tsmiuhas been reached, go
to Step 16.

Step 11 DetermineX s associated Withmin{ DzSk - CDsk}

Step 12: g, associated with extreme poir;tsk must enter the solution

Step 13: Determine the leaving variable

Step 14: The new basis is determined by replacing the vesrt¢sociated with leaving variable with

the vectoi3 .

Step 15: Setk =k +1, go to step 9.

Step 16: If the SLDM obtained the optimal solution go to (549, otherwise go to Step 17
Step 17: Set(x,,X,) = (X[, X} ) to the SLDM constraints.

Step 18: The SLDM formulate his problem, go to Step 8.

Step 19: (xlF,sz,xf,xf)ls as an optimal solution for bi-level large scéileear programming
problem, then stop.
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6.2 A Flowchart

A flowchart to explain the suggested algorithmdolving BLLSMOQPP is described as follows:

Convert
stochastic in the constrains into an
equivalent deterministic

v

use weight method to convert the
multi objective into single objective

v

Transform objective functions by
using first order Taylor series
polynomial series
3

Convert the master problem in term of |

extreme points

83

Determine the extreme points using
Balinski's

-

ul

Set k=1

Compute
Zy—Cp = C"Q..B_1 Pi—cjx

J

Set
k=k+1

The Optimal is reached

h 4
PP 5 _S
(xl > X3 ,x3,x4)

is an optimal for bi level

7. Numerical Example

The solution for (SBLMOLSQPP) is considered as:

[Upper Level]

Max F, (X) = Max(6x° + 2 + 2, + X, , 4C+ &5+ &,

X%

X%

Where X3, X, solves

LDM reach
optimal

Set
e — Gt )

Second level formulate his

problem
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[Lower level]

Max F, (x) = Max(2x, + 2x5 + 2x2, 4x,+ X5+ 6} o
X3,%4 Xg:X4

Subject to:

pr(x, + X, +X; + X, <v;) 2 0.0007,
pr(4x, +x, <Vv,)=20.0228

pr (4%, +2x, <Vv,) = 0.0026

pr(x, +4x, <v,)=0.0013

X5 Xoy Xg, X, 2 0.

Suppose that:
Vv, (i=1, 2, 3, 4) has independent normal distributioth the following means and variances

Table 1: Means and variances variables

Mean Variance

E(v;)=10 Var{, )=225,
E(v,)=8, Van,)=256
E(v;)=5 Var(v,)=100
E(v,)=8 Var(v,)=144

Now the (SBLMOLSQPP) with stochastic parametersdnstraints can be understood as following
deterministic bi level large scale quadratic prograng problem (BLLSQPP):

[Upper level]

Max F, (X) = Max(6xC +2x5 + 2, + X, , 4C+ &5+ &,

X, %5 X4 %o
Where X;, X, solves
[Lower level]

'\>{I3ax.4X F,(x)= “ﬂi‘f((le +2X5+ 2X2, A, + X5+ &5,

Subject to

X +X, + X% +X, <58,
4x, + X, <40,
4x, +2x, <32,
X; +4x, <30,

X, Xy, X3, X, 20
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Using the weighting method, then the problem (BLMER) can be written with a single-objective
function in upper level and lower level as followin

[Upper level]

Max H,(x ) = Max(5x? +5x2 + x, +4x,) ,

X1, Xp X1, Xp
[Lower level]

Max H,(x )= Max (x, +2x, + 2x2 + 4x2) ,

Subject to

X +X, + X +X, <58,
4x, + X, < 40,

4x, +2x, <32,

X; +4x, <30,

Xi, Xy, X5, X, 2 0.

Using the first order Taylor polynomial series tneert the quadratic function to linear function.
Therefore, the (BLLSPP) is written as:

[Upper level]

Max K,(x)= Max (20x, +10x, + X, +4%, = 25)
[Lower level]

Max K,(x)= Max(x, +2x, +12x; +4x, ~18) ,
Subject to

X + X, +X;+X, <58,
4x, + X, < 40,

4x, +2x, <32,

Xy +4x, < 30,

Xi, Xy, X5, X, 2 0.

The FLDM problem is formulated as follows:

Max K, (x ) = Max(20x, +10x, + x, + 4x, — 25)

X, Xp
Subject to

X X, +X;+X, <58,
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4%, + X, < 40,
X;, X5, X3, X, 2 0.

After four iterations the FLDM obtains the optinsalution.
(xlF X X%, ): (0400,75).

So, K, =405,

Now set(X;,X,) = (040) to the SLDM constraints.

Secondly, the lower level solves the problem asvi:

Max K, (x ) = Max (12x, + 4x, + 62)

Subject to

X; +X, <18,
4x, +2x, <32,
X; +4x, < 30,
X3, X, =0.

The second level decision maker will repeat theesataps as the first level decision maker until the
second level decision maker gets the optimal soigD:

(. x°)= ®0).
so, (x°,%,°,%°,%,°)= (04080).
K, =158

8. Summary and Concluding Remarks

This paper presented a bi level large scale muilfgaive quadratic programming problem with

stochastic parameters in constrains. The papenduates a powerful algorithm to solve

(BLSLMOQPP).Firstly the probabilistic nature of theoblem is converted intoan equivalent crisp
problem. Then Taylor series is used to convertgtiedratic problem into linear problem to be easy
for solving with the decomposition algorithm. Filyalthe numerical example was introduced the
result of this paper.

However, there are many other aspects, which sHmilelxplored and studied in the area of a large
scale bi-level optimization such as:

1. Large scale bi-level fractional programming problesth rough parameters in the objective
functions, in the constraints and with integratipnditions.
2. Large scale multi-level non-linear programming peoi with stochastic parameters in the

constraints and with integrality conditions.
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3.

Large scale multi-level non-linear programming peoi with stochastic parameters in the
objective functions, in the constraints and wittegrality conditions.
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