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Abstract: This paper solves a bi-level multi objective large scale quadratic 
programming problem with stochastic parameters in the constraints 
(SBLMOLSQPP). We solve this problem usingan algorithm that begins with 
transforming the probabilistic nature to equivalent deterministic of this 
problem, thenTaylor series is used to overcome the complexity of the quadratic 
problem. Finally, an illustrative numerical example is given to clarify the 
developed theory. 
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1. Introduction  
 
Decision problems of stochastic or probabilistic optimization arise when certain coefficients of an 
optimization model are random quantities. Stochastic multi objective programs are challenging from 
both computational and theoretical points of view since they combine three different types of models 
into one. Until now algorithmic results have been limited to special instances [1]. 
 
Stochastic or chance constraint programming is a mathematical programing where some of the data in 
the objective function or in the constraints are uncertain. Uncertainty is usually represented by a 
probability distribution on the parameters. 
 
Bi level programming problems (BLPPs) are hierarchical optimization problems in which there exist 
two decision makers (DMs) who have different priorities on decision. It is assumed that the DM at the 
upper level, who has higher priority than the other, first specifies a strategy, and then the DM at the 
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lower level chooses a strategy so as to optimize its own objective with full knowledge of the action of 
the DM at the upper level [2]. 
 
Multi-objective optimization problems are a class of difficult optimization problems in which several 
different objective functions have to be considered simultaneously. Usually, there is no solution 
optimizing simultaneously all the several objective functions [3]. 
 
Large scale programming which closely describes and represents the real world decision situations, 
various factors of the real system should be reflected in the description of the objective function and 
constraints, naturally these objective function and constraints involve many parameters and the 
experts may assign them different values [4, 5]. 
 
Emam et al.  [6] Presented an algorithm to solve bi-level multi-objective large scale quadratic 
programming problem with stochastic parameter in the objective functions. The objective of the first 
phase of the solution algorithm is to avoid the complexity of the stochastic nature and converts the 
problem into crisp problem, then Taylor series is combined with weight method to convert the multi-
objective quadratic problem into linear objective function. Therefore, the decomposition algorithm is 
usedto get the optimal solution for this problem. Emam et al.  [7] solved bi-level large scale quadratic 
programming problem with stochastic parameters in the constraints (SBLLSQPP). 
 
Alrefaei et al. [8] addressed the multi-objective stochastic optimization problem that arises in many 
real-world applications, especially in supply chain management and optimization. To this end, a 
simulated annealing algorithm is presented and used for solving this problem. The algorithm uses the 
hill-climbing criterion in order to escape from local minimalist trap. The paper also introduces a new 
Pareto set for stochastic optimization problems and demonstrates the application of simulated 
annealing on this Pareto set. 
 
Lachhwani [9] proposed an alternate technique based on fuzzy goal programming approach for 
solving multi-level multi objective linear programming problem (ML-MOLPP).In formulation of FGP 
model each objective functions at each level are transformed into fuzzy goals. Suitable membership 
function for every fuzzily described transformed objective functions at each level as well as the 
control vectors of each level decision makers are defined by determining individual optimal solution 
of each objective function at each of the decision making level. Then FGP approach is used for 
achieving highest degree of each of these membership goals by minimizing the sum of negative 
deviational variables. 
 
Currently the major challenging task for this paper is how to solve large scale bi level multi objective 
problem with probabilistic nature in constrains, so this paper introduces an algorithm to solve this 
problem. 
 
The rest of the paper is organized as follows: we start in Section 2 by formulating the model of a bi- 
level multi-objective large scale quadratic programming problem with stochastic parameters in 
constrains. Section 3 converts the stochastic in constrains into deterministic. Section 4 presents a 
Taylor series approach for bi-level large scale multi-objective quadratic programming problem 
(BLSLMOQPP) to convert the quadratic objective functions to linear objective functions. In section 5, 
the decomposition method for large scale bi-level linear programming problem is presented. In 
Section 6, an example is provided to describe the developed results. Finally, Section 7 concludes the 
paper and states some open points for future research work in the area of stochastic bi-level multi-
objective quadratic programming optimization problems. 
 

2. Problem Formulation and Solution Concept 
 
The bi-level large scale multi-objective quadratic programming problem (BLLSMOQPP) with 
stochastic parameters in constrains may be formulated as follows: 
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Definition 1: For any ( ) }{( )GxxxxxxGxx m ∈=∈ ,...,,,.,, 32121121 given by upper level, if the 

decision-making variable ( ) }{( )GxxxxxxGxx m ∈=∈ ,...,,,.,, 32143243  is the Pareto optimal 

solution of the lower level, then ( )4321 ,,,. xxxx  is a feasible solution of (BLLSMOQPP). 

 

Definition 2: If 
mRx ∈*

 is a feasible solution of the (BLMOLSQPP) with probability∏
=

m

i
i

1

α ; no 

other feasible solution Gx∈  exists, such that ( ) ( )xFxF 1
*

1 ≤ so 
*x is the Pareto optimal solution of 

the (BLMOLSQPP).  
 
3. Stochastic Transformation 
 
The basic idea is to convert the probabilistic nature of stochastic bi-level large scale multi-objective 
programming problem into deterministic problem by using [10]: 
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Where 

i
Kα  is the standard normal value such that ii

K αα −=Φ 1)( ; and )(aΦ  represents the 

“cumulative distribution function” of the standard normal distribution evaluated at a.  
 
Then the problem can be understood as the corresponding deterministic bi-level large scale multi-
objective quadratic programming problem as following: 
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4. Taylor Series Approach 
 
We use the weighting method to transform the objective functions in the upper level and lower level 
from multi-objective into single objective. 

( ) )](),...,([ 111
,

1
, 2121

xfxfMaxxFMax
U

xxxx
=  

( ) ,)](),......,([ 112
,

2
, 2143

xfxfMaxxFMax n
xxxx

=  



Int. J. Pure Appl. Sci. Technol., 28(2) (2015), 77-87                                                               81 

To solve a bi level large scale quadratic programming problem using decomposition algorithms is a 
complex problem. Taylor series can overcome this complexity by obtaining polynomial objective 
functions equivalent to quadratic objective functions in the following form [11]: 
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So the BLLSPP can be written as: 
 
[Upper Level] 

                                                  (10) 
 
Where 43, xx solves 

 
[Lower Level] 
            
                                                                                             (11) 
 
 
Subject to 
 

.Gx ′∈                         (12) 
 
5. Decomposition Algorithm for Bi Level Large Scale Linear Programming 
Problem 
  
The bi level large scale linear programming problem is solved by adopting the leader-follower 
Stackelberg strategy combined with Dantzig and Wolf decomposition method [12]. First, the optimal 
solution that is acceptable to the FLDM is obtained using the decomposition method to break the large 
scale problem into n-sub problems that can be solved directly. 
 
The decomposition technique depends on representing the BLLSLPP in terms of the extreme points of 
the sets sss bxd ≤ , 0≥sx , ms ,..,2,1= .To do so, the solution space described by each sss bxd ≤ ,

0≥sx , mj ,..,2,1= must be bounded and closed. 

 
After that by inserting the upper level decision variable to the lower level for him/her to search for the 
optimal solution using Dantzig and Wolf decomposition method [12], then the decomposition method 
breaks the large scale problem into n-sub problems that can be solved directly and obtain the optimal 
solution for his/her problem which is the optimal solution to the BILSPP. 
 
Theorem 1: The decomposition algorithm terminates in a finite number of iterations, yielding a 
solution of the large scale problem. 
 
To prove theorem 1 above, the reader can refer to [12]. 
 

6. An Algorithm for Solving BLLSMOQP Problem 
 
6.1 Algorithm 
 
This is an algorithm to solve bi-level large scale multi-objective quadratic programming problem 
programming problem (BLLSMOQPP) with stochastic parameters in constrains.  
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This algorithm conquers the complexity nature of the bi level large scale quadratic programming 
problem. The suggested algorithm can be summarized in the following manner: 
 
Step 1: Calculate the ��	


��
���
��	

��. 

 
Step 2: Convert from stochastic to deterministic formula. 
 
Step 3: Formulate the equivalent bi-level large scale multi-objective quadratic programming 
 
Step 4: Use weight method to convert from multi objective to single objective. 
 
Step 5: Convert bi level large scale multi-objective quadratic programming to linear by using Taylor 
series approach. 
 
Step 6: Start with the upper level problem and convert the master problem in terms of extreme points 
of the sets sss bxd ≤ , 0≥sx , 1, 2, 3s = . 

Step 7: Determine the extreme points 3,2,1,.
1

==
∧

=
∑ sxx sksk

k

k

s

j

β  using Balinski’s algorithm   [13]. 

Step 8: Set 1=k .  

Step 9: Compute skskBsksk cPBCcz −=− − 1 . 

 

Step 10: If  0≤−
∗∗

sksk cz   , then go to Step 11; otherwise, the optimal solution has been reached, go 
to Step 16. 
 

Step 11: Determine skX
∧

 associated with }min{ sksk cz
∗∗

−  

 

Step 12: jkβ associated with extreme point skX
∧

 must enter the solution  

 
Step 13: Determine the leaving variable 
 
Step 14: The new basis is determined by replacing the vector associated with leaving variable with 

the vector skβ . 

 
Step 15: Set 1+= kk , go to step 9. 
 
Step 16: If the SLDM obtained the optimal solution go to Step 19, otherwise go to Step 17 
 
Step 17: Set ),(),( 2121

FF xxxx =  to the SLDM constraints. 
 
Step 18: The SLDM formulate his problem, go to Step 8. 
 
Step 19: ( )SSFF xxxx 4321 ,,, Is as an optimal solution for bi-level large scale linear programming 

problem, then stop. 
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6.2 A Flowchart 
 
A flowchart to explain the suggested algorithm for solving BLLSMOQPP is described as follows: 
 

 
7. Numerical Example 
 
The solution for (SBLMOLSQPP) is considered as: 
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Where 43, xx   solves 
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[Lower level] 
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Suppose that: 

iv  (i =1, 2, 3, 4) has independent normal distribution with the following means and variances 

 
Table 1: Means and variances variables 

 
Mean Variance 
E( 1v )=10       Var( 1v )=225, 

E( 2v )=8 ,                Var(2v )=256 

E( 3v )=5 Var( 3v )=100 

E( 4v )=8 Var( 4v )=144 

 
Now the (SBLMOLSQPP) with stochastic parameters in constraints can be understood as following 
deterministic bi level large scale quadratic programming problem (BLLSQPP): 
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Using the weighting method, then the problem (BLMOQPP) can be written with a single-objective 
function in upper level and lower level as following: 
 
[Upper level] 
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Using the first order Taylor polynomial series to convert the quadratic function to linear function. 
Therefore, the (BLLSPP) is written as: 
 
[Upper level] 
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The FLDM problem is formulated as follows: 
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,404 21 ≤+ xx  
 
 

After four iterations the FLDM obtains the optimal solution. 
 

( ) ).5.7,0,40,0(,,, 4321 =FFFF xxxx  

 

So, 4051 =K . 
 
Now set )40,0(),( 21 =xx  to the SLDM constraints. 
 
Secondly, the lower level solves the problem as follows: 
 

( ) )62412( 43
,

2
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++= xxMaxxKMax
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Subject to 
 

,1843 ≤+ xx
 
,3224 43 ≤+ xx
 

,304 43 ≤+ xx
 

 
 

 
The second level decision maker will repeat the same steps as the first level decision maker until the 
second level decision maker gets the optimal solution so: 
 

( ) ).0,8(, 43 =ss xx  
 

So, ( ) ).0,8,40,0(,,, 4321 =ssss xxxx  
 

1582 =K . 
 
8. Summary and Concluding Remarks 
 
This paper presented a bi level large scale multi objective quadratic programming problem with 
stochastic parameters in constrains. The paper introduces a powerful algorithm to solve 
(BLSLMOQPP).Firstly the probabilistic nature of the problem is converted intoan equivalent crisp 
problem. Then Taylor series is used to convert the quadratic problem into linear problem to be easy 
for solving with the decomposition algorithm. Finally, the numerical example was introduced the 
result of this paper. 
 
However, there are many other aspects, which should be explored and studied in the area of   a large 
scale bi-level optimization such as: 
 
1. Large scale bi-level fractional programming problem with rough parameters in the objective 

functions, in the constraints and with integrality conditions. 
2. Large scale multi-level non-linear programming problem with stochastic parameters in the 

constraints and with integrality conditions. 

.0,,, 4321 ≥xxxx

.0, 43 ≥xx
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3. Large scale multi-level non-linear programming problem with stochastic parameters in the 
objective functions, in the constraints and with integrality conditions. 
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