Int. J. Pure Appl. Sci. Technal., 29(2) (2015), pp. 54-63

| nternational Journal of Pure and Applied Sciences and Technology
| SSN 2229 - 6107
Available online atwww.ijopaasat.in

Research Paper

Multi-Agent Based Agile (XP) Software Development
Process Scheduling M odel

Y.M.Malgwi'" and N.V. Blamah?

! Computer Science Department, Modibbo AdamaUniversitTechnology, Yola, Adamawa State,
Nigeria
2Computer Science Department, University of JosgNig

* Corresponding author, e-mail: (yumalgwi@yahoo.gom

(Received: 3-7-13; Accepted: 17-7-15)

Abstract: User requirements during software devel opment keep changing due
to evolving business needs. Most Users do not have clear vision about the
specification of their requirements at the early stage. In such changing
environment agile development methodology is suited. In this paper, a multi-
agent based approach to process scheduling was adopted, where each activity
is viewed as an autonomous and flexible agent process. Crucial for the multi-
agent based system in project scheduling, is the availability of an effective
model and algorithm for scheduling of task. The developed model (Multi-agent
based System) provides an optimized and flexible agile process scheduling and
reduces overheads in the software process as it responds quickly to changing
requirements without excessive rework in project scheduling.

Keywords. Agile Software development process methodologiedrene
programming, Agents and Multi-agents.

I ntroduction

Agile software development is a group of softwaevelopment methods based on iterative and
incremental development, where requirements andgtisnos evolve through collaboration between
self-organizing, cross-functional teams (GonzalezZP#ar, 2009). It promotes adaptive planning,
evolutionary development and delivery. (Hock, 2009)

The most popular definition of Agent was proposgd\Wooldridge & Jennings, 1995): An Agent is
essentially a special software and hardware compyotiet has the characteristics of autonomy,
sociality, and reaction and pro-action. It is a pober system that is capable of independent

Int. J. Pure Appl. Sci. Technol., 29(2) (2015), 54-63 55

(autonomous) action on behalf of its users or owtaran provide different interaction interface fo
the outsiders, and even have the characteristids a8t knowledge, belief, and intention and so on.
(Pouret al. 2004).

Just as its name implies, Multi-agent System (MASa system that consist of numbers of agents
within an environment which interact with one amsthit can be used to solve problems that are
difficult or impossible for an individual Agent @eings, Sycara & Wooldridge, 1998).

In the most general case, agents can be actingluaiflof users with different goals and motivation.
To successfully interact, they will require theliypito cooperate. Coordinate, and negotiate wétbhe
other, much as people do. Indeed, multi-agent systenhance overall system performance, in
particular along such dimensions as computationéficiency, reliability, extensibility,
responsiveness, reuse, maintainability, and flesgliMichael, 2002) & (Fabict al. 200).

Lack of penetrations of the modern agile plannimgis during software development process usually
provides a ‘quick and dirty’ solution which is imfoally managed. Typically, informal managed
planning factors are:

i) Scheduling of tasks and resources
i) Relationship or Communication between entities.

Although the principles of agile development rely communication instead of rigorous planning,
this fact can be explained by the lack of easilgliapble algorithm solutions. Informal approaches
work well in smaller projects but not sufficientlarger projects. As the size and complexity insesa
scheduling becomes a very complex process and atévtmol support.

As a consequence, optimized and flexible projeenglare crucial issues from the economic
considerations of both customer and developer's. sithese critics underline the importance of
providing a more established model for agile preceEheduling. In this article, the aim is to dirai
these barriers and implement a model that schedéesgile process. The aim of the model is to
provide an efficient and flexible system.

Materials and M ethods

In this research, the materials used are gotten foornals and text books. A mathematical model for
the Multi-agent based agile (XP) process schedukiigbe design to mathematically represent the
whole process. Also, algorithm to implement the hmatatical model will also be developed and
simulated with real life and generated data setctoalize its effectiveness. Visual C++ is used as

tool in order to ensure smooth implementations klso important to point out that the model cretate
follows the principles of branch and bound optirticaa technique in order to generate an optimized
schedule for the XP processes stated earlier.

Problem-Solving Framewor k

The process of multi-agent based agile schedulinggss problem solving can be modeled by a 6-
phase closed-loop XP process shown in Figure Jilks process contains the following functions:
Selection of user stories, breaking down of tapkamning the release, Executing/developing the,plan
Releasing the software and Evaluating the systerthéyuser/ customer. The arrows represent the
flow of data between each of these functions, wkicins a continuous feedback mechanism.

Int. J. Pure Appl. Sci. Technal., 29(2) (2015), 54-63

Break down
- Plan release
stories to tasks

Select user
stories for this
release

Evaluate
system

Release
software

Develop/integrate/
test software

56

Figure 3.1: XP Process-cycle framework (lan, 2009)

Each of the functions in Figure 3.1 can be furtthtecomposed to address the more specific problem
of multi-agent based agile planning and scheduling.

The Analysis Phase

The analysis phase aimed to clarify the problerhavuit any (or minimal) concerns about the solution.

The analysis phase is carried out through a numib&eps, described.

Use Case Diagram

Use cases been an effective way to capture thafmdtiunctional requirements of a new system. The
use case was used in representing the XP procesaracthat demonstrates how the system interacts
with the external environment to achieve a spegéal. Theuse case diagramis produced as shown

in Figure 3.2 below.

Customer
(user)

Programmers
(Team members)

Initiate

S
e
&
A
P Break down user
stories
Evaluate
System

)
Schedule tasks to
team members

- @
Develop individual
units
/(

l— Test individual units]

developed

.
Integrate units to the
whole system
Test the whole
system

Release software

Terminate

Scheduling
manager

Figure 3.2: Use case diagram for XP processing

Int. J. Pure Appl. Sci. Technol., 29(2) (2015), 54-63 57

Initial Agent Types Identification

This identifies the main agent types and subsedioemtation of a first draft of thegent diagram.
The following rules are being applied;

i.) Adding one type of agent per actors.
ii.) Adding one type of agent per resource. Bylgipg the above rules to the agile process case
study, the initial diagram shown in Figure 3.3 Idaoned.

Automated unit test
Unit test framework
User Agent
Agent
Customer (User) Schedul Scheduling
cheduling <> Algorithms
Agent 9

Manager
Agent
Programmer
4> Agent

Project Manager
Manager

Programmer

Figure 3.3: Agent Diagram for XP Processes
With reference to Figure 3.3 above, the agent dagncludes four types of elements:
1. Agent Types: The actual agent types, represented by circles.

2. Humans. People that must interact with the system under develapniRepresented by the UML
actor symbol.

3. Resources: External systems that must interact with the sysiader development, represented
by rectangles.

4. Acquaintances:. Represented by an arrow linking instances of the above eles\espiecifying that
the linked elements will have to interact in sonaywhile the system is in operation.

Responsibilities | dentification

In this step, for each identified agent type, aitiahlist is made of its main responsibilities &m
informal and intuitive way. The artifact resultifrgm this process is thresponsibility table.
The following rules are applied in this step:

i) The initial set of responsibilities was deriviedm the use cases identified in figure 3.3
above.
i) The agents’ responsibilities were considered.

Int. J. Pure Appl. Sci. Technol., 29(2) (2015), 54-63 58

By applying the above rules to the agile procesedualing case study, the consideration of the XP
Process agent is initiated and Table 1 is produced.

Table 1. Responsibility table for Agents in XP Process

Agent TypelR e s p o n s i b i |l it i e s
User agent 1. Initiates the proje
2. Provides requirements inform of user stories
3. Evaluates the system at each iteration
Manager Agent 1. Gets requirements from user agent inform of
2. Breaks down user stories
3. Retrieves the relevant Scheduling agent
4. Tracks the activities of the Team Members
5. Releases software
6. Terminates the project
Scheduling Agent 1.Retrieves tasks and resources from manage
2. Schedules tasks to resources.
Programmer Agen 1. Gets tasks from Scheduling raige
2. Develops individual units
3. Retrieves the relevant Unit Test agent
4. Provides status to manager agent
5. Integrates units to the whole system
6. Tests the whole system
Unit tests Agents 1. Receives completed units from programmer agaresting.
2. Carries out unit testing

Acquaintances | dentification
In this step, the focus was on who needs to intevéh whom and the agent diagram (Figure 3.2) is

updated by adding proper acquaintance relationsemiimg agents that need to have one or more
interactions. An obvious acquaintance relationha XP process case study is required between

different XP process agents.

Programme

Programm
er Agent

Scheduli
ng

Unit test

<+“—>

Project
N ananar

Scheduli
i Je—r Come)

Figure 3.4: Agent diagram for XP processes depicting Acquairea

Int. J. Pure Appl. Sci. Technal., 29(2) (2015), 54-63

Multi-Agent Planning and Scheduling Process

As shown in Figure 3.5, these steps consist of:

i)
i)

ii.)

iv.)
V.)

vi.)

It is important to note that the small arrows betwehe specific tasks in Figure 3.5 represent
precedence relations, while the large arrows between the high-levelcfions represent continuous

data flow and feedback between these phases. It should éd, fmiwever, that the feedback provided
by the data flow could represent precedence relgtad a higher level itself in the context of this

Formulating or receiving from another source (Usestomers).

Structuring this objective in a form where it candasily decomposed into a partially-ordered

set of sub-problems or jobs.

Surveying the environment for available agents sexices that may be used to complete

these jobs.

Mapping jobs to available services or sets of sess/that is capable of completing them.
Determining the allocation of jobs to agents, stizdt the resulting schedule is optimized

according to user-defined parameters.

Forwarding this solution to the appropriate agémt&valuation.

Send results to
appropriate agents

F Y
Evaluate

1

1)
: Decompese into Agent/service

! individual jobs discovery

i

1

1

1

Schedule
individual

Evaluate
software
r

[

Release |_

jobs (tasks)
to
availableage

nte)

software [

Develop/test/integrate
L individual units

architecture (Mark.2003)

—>

Data Flow

_

Precedence
Relations

Figure 3.5: Multi-agent planning and scheduling process inciietext of the closed-loop

Int. J. Pure Appl. Sci. Technol., 29(2) (2015), 54-63 60

architecture, as one phase may not be alloweddin liks next cycle until it has received data from
another phase.

Problem For mulation and Decomposition

In the multi-agent framework that we are considgrihere are sets of agent in XP process, each with
a different set of available abilities and servicassingle agent is given an objective to complete,
possibly from another agent, and it wishes to &dkeantage of the resources provided by these other
agents in the XP process to complete the objeativee efficiently. The planning agent’s first stap i

to decompose its objective into a number of tabkd tan be allocated to other agents in the XP
process and completed in parallel.

However, there are often many possible problem fidaitions for a given objective and choosing the
best way to decompose the objective which may departhe structure of the agent organization and
the number of different service types provided bgse agents. In the scenario that this research
addresses, the agent’s main goal is to chooseothprgcedence that produces the schedule with the
most possible user stories completion within adixetime.

Mathematical Modéd for the Multi-Agent Based System

Problem Variables

For easily formulating a mathematical model for thalti-agent based system representing our agile
software development process (more precisely exrpragramming). It is inimical we identify our
constraints decision variables and then formulateobjective function.

Input Parameters

j is the index of all set of available agent=ach agent is indexed numerically
denoted by.

P- Immediate job precedence matrix
Where:

_ { 1 if user story j directly precede
H’J' 0, otherwise

Q- Full user story priority matrix

. 1, if user story’ comes anytime before
QJj = 0, otherwise

B- Agent ability matrix

_ 1, if agent A provides the services needed topleta story j
3A - 0, otherwise

A possible mathematical model for the multi-agemisddl agile software development process
scheduling can be in the form formulated below.

. . — m n
Maximize z= Y1 Xa=1Bja- Xj'a

Subiject to:
Ba=1 VieEW,ae A

Int. J. Pure Appl. Sci. Technal., 29(2) (2015), 54-63 61

X'a=1 VieW
X'a+Xa<l V() EW,ae A
Where:
X'a=0o0rl, Xae{0,1}
B'a=0orl1l, Bae{0, 1}
Algorithm

A suitable algorithm for implementing the matheraltimodel formulated above is provided below:

Require: (IRe N)
a€e A, B/ ae {0, 1}
JEW, Q€ {0, 1}, P;;€ {0, 1}

Ensure: vj 3! W andva3! A (X' a€ {0, 1})
: repeat

aEA CA*

V¥ ¥ ;Bfa:ac A

K, I'c

G VT * 1,

X« Schedule (Q, A, B)

until X is satisfying

return X.

NGO wWNE

Results and Discussions

Results

The model was tested using different data seteterchine its efficiency and flexibility. The datets
used consist of seven actual deals that were teflethese includes Collateral evaluation (RA)kRis
assumption (B, Ukrainian deal flow | (R) & Il (Rp), Romanian deal flow | (8, II[(Rg), and Il
(Ro).

These are indexedsRo R; respectively (gotten from the back log of IRIS ligadion developed by
multi logic Ltd) (Akos, 2011). All releases had samroject members (16 programmers) iteration
length (2 weeks), iteration velocity (30 story gpimlomain, customer and development methodology
(XP) but were differentiated by user stories, itiera counts, length of each iteration and release
duration.

In order to create more flexibility, the user ofs®m input the different services provided by the
available agents (programmers, managers, usetsagest and so forth). The model creates an
optimal combination of all the different servicéBhe propose multi-agent based agile process
scheduling creates a more optimal schedule thehaelbing a higher Max Value as dully shown in
table 4.1 below.

Table 4.1: Optimized Multi-agent based agile release planesl

I Cll LIR D A|P Max=DV

[ex][e¢]

>S4

HOOlon!l00l O

00| 00|00

an|an| NN w|;
wlo|lw|~N|~N|o|w|O

H
o
(RGP PRI I PN PN N e

IENINHSIFNENS
>

pulpipvipuipeipuipe)
® mm |9 |0 [w >
g |bhOwWl~
NININININININ
OO0 I00|0O|O
g{h|lOob_[AWlOT

Int. J. Pure Appl. Sci. Technal., 29(2) (2015), 54-63 62

Keys

Max = DV - Maximum Deliverable Values

SC - User story Count NA - Number of Agents

IC— Iteration Count SA - Type of Agents Seegic

IL— lIteration Length PS - Priorities of sewiprovided by agents

RD — Release Duration

Discussion of Results

The main concept of agile process scheduling isdas multiple knapsack optimization technique.
The proposed multi-agent based system covers anaidgng release scheduling (fixed time).

The multi-agent based system made it possible apteah efficient global optimization algorithm for
more flexibility and smooth iterations. The algbnits strives to prevent resources overload-which
often yields increasing delivery risks, and prev&source underload-which captivates economically,
and badly utililized iterations.

The results reveal that the outcome of the researem extension of readily available scheduling
tools which helps collected the process schedueig (user stories, required effort, team velocity,
etc) Therefore, with this extension, it is beliexhdt one can produce a flexible and efficient pssc
scheduling system easily based on the collectexd dat

The method also indicates that it requires no nmimie because of the good communications or
relationship between entities. It expresses depenee between deliverables features, as it produces
optimal schedule within seconds. However, the aatejor difference between the two systems
(agile process scheduling and Multi-agent basedgs® scheduling) is the higher quality schedule
realized (avoiding underload and overload), as rhdti-agent based system produces a better
resources utilization and make it possible to teedale the process anytime within seconds in order
to support the what-if-analysis.

Conclusion

The proposed model gives the main parameters df/ffieal agile process scheduling space (such as
objectives and constraints) and presents an ogitiaiz model that can be realized by optimization
tools or by implementing the suggested custom-nadgiarithm.

The goal of this thesis has been to implement difagént based agile process scheduling model for
solving the most difficult classes of these prolderAdditionally, this approach provides more
informed and established decisions with applicatbrvhat-if analysis (rescheduling the release by
altering its parameters).

The findings of this result reveal that:

i.) An agent provides an interoperable interfaceatoarbitrary system and/or behaves like a
human agent working for some clients in pursuit©bwn agenda.

ii.) The multi-agent systems can model complex esyst and introduce the possibility of
agents having common or conflicting goals. Thegents may interacts with each
other both directly (clicking on the environmeat)directly (via communication).

iii.) The system is optimal and flexible with lired resources management capabilities.

Int. J. Pure Appl. Sci. Technol., 29(2) (2015), 54-63 63

Based on the findings of this research, the Mytrg based systems may be recommended for
instance in the field of telecommunication systewisere large distributed networks of inter
connected components which need to be monitorednaméged in real time.

References

[1]
[2]
[3]

[4]
[5]

[6]
[7]
[8]
[9]

B. Fabio, C. Giovanni and G. Dominic, DevelapiMulti-Agent System with JADE, John
Wiley & Sons Ltd, 2004.

G. Pour, F. Yao and C. Yu, A mobile agent-baaszhitecture for mobile systems supporting
distributed software project managemeBEE Soft COM, (2004).

M. Hock, Review of agile methodologies in softve developmentnternational Journal of
Research and Reviewsin Applied Sciences, 1(1) (2009), 6-8.

M. Wooldridge, An Introduction to Multi-AgentyStem, John Willey & Sons Ltd, 2004.

N. Jennings, K. Sycara and M. Wooldridge, Adwep agent research and development,
Int.Journal of Autonomous Agents and Multi-Agent Systems, 16(1998), 62-87.

R. Gonzalez and P. Pilar, Some findings conogrmequirements in agile methodologies,
Product-Focused Software Process |mprovement, 32(4) (2009), 171-184.

S. Akos, Conceptual scheduling model and oé@direlease schedule for agile environment,
Information and Software Technology, 53(2011), 574-591.

S. lan, Software Engineering (Ninth EditiongdPson Education, Inc., Publishing, Addison —
Wesley, New York, 2009.

M. Wooldridge and N. Jennings, Intelligent atgenTheory and practiceKnowledge
Engineering Review, 10(1995), 115-152.

